

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA INGENIERÍA EN INFORMÁTICA

Programa Sinóptico				
1. Asignatura: Investigación de Operaciones II				
4. Pre-requisito:	5. Co-requisito:			
7. Núcleo académico:	8. Carácter:			
Tecnología aplicada	Obligatoria			
Carga horaria semanal				
1 11. Auto estudio:	12. Actividad integrada:			
13. Profesor responsable: Marilena Yeguez				
	de Operaciones II 4. Pre-requisito: 7. Núcleo académico: Tecnología aplicada Carga horaria semanal 1 11. Auto estudio:			

15. Justificación:

En esta asignatura, al igual que en Investigación de Operaciones I, se enseña al estudiante de Ingeniería en Informática a formular, desarrollar y solucionar problemas mediante la utilización de modelos simbólicos matemáticos, habilidades que le permitirán desarrollar tareas de planificación, gestión y control de las operaciones y actividades, considerando efectos de factores incontrolables, estableciendo patrones y regímenes de funcionamiento y estudios de posibilidades de mejoramiento y optimización.

Por lo general, los modelos más realistas son los modelos probabilísticos, aquellos donde los datos no se conocen con absoluta certeza. En esta asignatura se estudia este tipo de modelo. Se presenta la base teórica necesaria junto a situaciones clásicas y representativas, se resuelven problemas que permitan percibir la importancia económica y operacional de los modelos simbólicos matemáticos probabilísticos en la resolución de problemas.

La instrucción de los tópicos seleccionados, debe ayudar a los estudiantes a desarrollar una apreciación de lo que es la complejidad de la realidad y como ésta es interpretada mediante relaciones y abstracciones traducidas en expresiones matemáticas. Debe ayudarlos también a desarrollar imaginación, habilidades de abstracción, establecer grados de precisión y aproximación, interpretación de resultados y formulación de soluciones que permitan su aplicación directa. Además de desarrollar sus actividades inductivas y analíticas y familiarizarlos con el manejo de situaciones de incertidumbre.

- 16. Objetivo general: Al finalizar la asignatura, el estudiante debe ser capaz de analizar, interpretar y representar situaciones utilizando o formulando modelos simbólicos matemáticos probabilísticos, que le permitan proporcionar descripciones, comportamientos, políticas y alternativas de acción partiendo de los resultados alcanzados con la solución de los modelos.
- 17. Contenidos: Análisis de decisiones y Teoría de juegos, Cadenas de Markov, Teoría de colas, Teoría de inventarios.
- 18. Métodos y técnicas de enseñanza (presentación del profesor de los aspectos contenidos en el programa):

Presentación y discusión de conceptos.

Participación espontánea o sugerida.

Establecimiento de procedimientos.

Resolución de problemas.

Formulación de conclusiones.

Asignación de ejercicios prácticos individuales y por equipo.

Actividades de laboratorio.

19. Criterios y técnicas de evaluación:

Pruebas de desarrollo.

Pruebas cortas.

Proyecto con su respectiva defensa.

20. Bibliografía:

TAHA, Hamdy. Investigación de Operaciones, una introducción. Prentice Hall.

HILLIER, Frederick. Y LIEBERMAN, Gerard. Introducción a la Investigación de Operaciones. McGraw-Hill.

SHAMBLIN, James. Y STEVENS, G.T. Investigación de Operaciones un enfoque fundamental. McGraw-Hill.

CHURCHMAN, West. Y ACKOFF, Rusell. Introducción a la Investigación Operativa. Editorial Aguilar. México.

SASIENI, Maurice. Y YASPAN, Arthur. Investigación de Operaciones, métodos y problemas. Editorial Limusa-Wiley. México.

KAUFMANN, A. Métodos y Modelos de Investigación de Operaciones Tomo II. Editorial Intercontinental (CECSA). México

LYNWOOD, Jhonson. Y MONTGOMERY, Douglas. Operations Research in Production Planning, Scheduling and Inventory Control.. John Wiley & Sons Inc.

HOWARD, Ronald. Dynamic Probabilistic Systems Volume: Markov Models. John Wiley & Sons Inc.

GROSS, Donald. Y HARRIS, Carl. Fundamentals of Queueing Theory. John Wiley & Sons Inc.

SAATY, Tomas. Elements of Queueing Theory with Applications. Dover Publications Inc. N.Y.

BINMORE, Ken. Teoría de Juegos. McGraw-Hill

McKINSEY, J.C. Introducción a la Teoría Matemática de los juegos. Aguilar S.A. Ediciones. Madrid.

DUNCAN, Lucce. Y RAIFFA, Howard. Games and Decisions, Introduction and critical survey. Dover Publications. N.Y.

Unidad I: <u>Análisis de decisión y Teoría de juegos</u>
Objetivo General: <u>Al finalizar la unidad, el alumno formulará y resolverá situaciones de toma de decisiones con o sin intereses en conflicto.</u>

Objetivos	Actividades	Contenidos	Evaluación	Recursos
1. Reconocer los diversos ambientes de	1.1 Presentación y discusión de las	Ambientes de decisión: bajo certidumbre,	Los objetivos	Pizarra, marcador y
decisión.	características de los ambientes de	riesgo e incertidumbre.	1, 2, 3 serán	borrador.
	decisión.		evaluados con	
2. Formular un modelo para el problema		Método analítico de jerarquía.	una prueba	Transparencias,
de análisis de decisión.	2.1 Formulación de un modelo	Criterio del valor esperado. Árbol de	corta de	diapositivas.
	para cada uno de los ambientes de	decisiones.	carácter	
3. Resolver el modelo, interpretar los	decisión.	Laplace, Mínimax, Savage y Hurwicz	formativa.	Computadora
resultados obtenidos y sugerir políticas o				personal, software
líneas de acción.	3.1 Establecimiento del	Definición de teoría de juegos,		de aplicación.
	procedimiento para solucionar	características, asunciones,	Todos los	70111 01
4. Identificar de la vida real situaciones	cada uno de los modelos.	consideraciones y aplicaciones.	objetivos serán	Bibliografía
de confrontación que puedan ser	3.2 Resolución de los modelos.		evaluados	recomendada en
estudiadas por la teoría de juegos.	3.3 Formulación de conclusiones.	Estrategias y matriz de pagos.	mediante la	análisis sinóptico.
5 A1: 11: (d-	4 1 Dansantanića sa dinassića da la	Clasificación de los juegos.	prueba de	
5. Analizar y encontrar la solución de	4.1 Presentación y discusión de la	T	desarrollo que	
juegos suma cero y suma constante	definición, características, consideraciones y aplicaciones de	Juegos dos personas suma cero: Definición, teorema mínimax, puntos de	corresponde al primer parcial.	
mediante la aplicación de técnicas de la teoría de juegos.	la teoría de juegos.	silla, estrategias puras, estrategias mixtas.	(25%)	
teoria de juegos.	la teoria de juegos.	Soluciones algebraicas, aplicación de la	(2370)	
6. Presentar alternativas de acción de	5.1 Definición de las estrategias de	programación lineal. Características de		
acuerdo a las circunstancias planteadas.	cada competidor en un juego.	los juegos suma constante.		
acuerdo a las circunstancias pranteadas.	5.2 Construcción de la matriz de	los juegos suma constante.		
	pago para cada jugador.	Juegos n personas suma cero: Estrategias		
	5.3 Presentación de la clasificación	compuestas		
	de los juegos con sus			
	correspondientes mecanismos de			
	solución.			
	5.4 Resolución de juegos suma			
	cero y suma constante.			
	6.1 Formulación de conclusiones.			

Unidad II: <u>Cadenas de Markov</u>
Objetivo General: <u>Al finalizar la unidad, el alumno formulará y solucionará situaciones de tipo estocástico adaptándolas a modelos de cadenas finitas de Markov.</u>

Objetivos	Actividades	Contenidos	Evaluación	Recursos
1. Identificar situaciones que presentan características de naturaleza estocástica. 2. Analizar procesos estocásticos y adaptarlos a modelos de cadenas finitas de Markov. 3. Clasificar cadenas finitas de Markov. 4. Analizar el comportamiento futuro de la situación y proponer alternativas de acción de acuerdo a las posibilidades planteadas. 5. Hallar la solución, encontrando todos los parámetros que permiten describir la situación en función de probabilidades de situaciones, valores y costos esperados.	1.1 Presentación y discusión del concepto, características y ejemplos de los procesos estocásticos. 2.1 Definición y discusión de: estado del sistema, probabilidades estacionarias de transición de un paso y n pasos. 2.2 Exposición del Axioma de Markov. 2.3 Construcción de la matriz de transición para un proceso estocástico que cumple con el Axioma de Markov. 3.1 Clasificación de las cadenas de Markov usando el análisis topológico y espectral. 4.1 Presentación y discusión de los criterios de estabilidad y estado estacionario. 4.2 Cálculo e interpretación de las probabilidades de estado estable. 5.1 Estudio de los tiempos de primer paso, tiempos de recurrencia y tiempos de absorción. 5.2 Calculo del costo esperado por unidad de tiempo. 5.3 Formulación de conclusiones.	Concepto de proceso estocástico, características y ejemplos. Definición de estado del sistema. Axioma de Markov. Matriz y probabilidades estacionarias de transición. Clasificación de las cadenas de Markov: Análisis topológico, Análisis espectral Matrices regulares, Teoremas y propiedades de matrices estocásticas. Ergodicidad. Criterios de estabilidad y estado estacionario, ecuaciones de Chapman-Kolmogorov. Tiempos de primer paso, de recurrencia y de absorción. Procesos markovianos de decisión. Situaciones con costos y utilidades asociadas.	Los objetivos 1, 2, 3 serán evaluados con una prueba corta de carácter formativa. Todos los objetivos serán evaluados mediante la prueba de desarrollo que corresponde al segundo parcial. (25%)	Pizarra, marcador y borrador. Transparencias, diapositivas. Computadora personal, software de aplicación. Bibliografía recomendada en análisis sinóptico.

Unidad III: <u>Teoría de colas</u>
Objetivo General: <u>Al finalizar la unidad, el alumno formulará y resolverá adecuadamente modelos de colas de espera.</u>

Objetivos	Actividades	Contenidos	Evaluación	Recursos
1. Establecer si una situación es susceptible	1.1 Discusión de	Definición de cola, características,	Todos los	Pizarra, marcador y
de estudiarse mediante la aplicación de	conocimientos previos de los	aplicaciones.	objetivos serán	borrador.
modelos de colas de espera.	estudiantes.		evaluados	
	1.2 Presentación del concepto	Elementos de un modelo de colas,	mediante:	Transparencias,
2. Formular un modelo o ajustar a un modelo	de cola, sus características y	notación Kendall-Lee.		diapositivas.
conocido la situación de espera.	aplicaciones.		Una prueba	
		Modelos de colas Poisson	corta de	Computadora
3. Resolver el modelo para encontrar los	2.1 Exposición de los	Axiomas Poisson, fdp Poisson, fdp	carácter	personal, software
parámetros de comportamiento y proponer	elementos de un modelo de	exponencial. Formulas de Little's.	formativa	de aplicación.
alternativas de acción.	colas y notación Kendall.	Modelos de solo nacimiento y solo	(sólo modelos	D.1.1. 0
	2.2 Presentación y discusión	muertes. Formulación de modelos por	de colas de	Bibliografía
	de los Axiomas Poisson.	ecuaciones de balance de probabilidades.	Poisson).	recomendada en
	2.3 Definición de los	Ecuaciones en diferencia y aplicación de		análisis sinóptico.
	parámetros de	la transformada z. Formulación de	II	
	comportamiento de una cola.	modelos por ecuaciones de balance de	Una prueba de	
	2.4 Presentación y discusión de las formulas de Little's.	tasas. Modelos con capacidades infinitas y finitas. Modelos con costos asociados.	desarrollo que corresponde al	
	2.5 Formulación de modelos.	y filitas. Modelos con costos asociados.	tercer parcial.	
	2.3 Pormulación de modelos.	Modelos de colas no Poisson	(25%)	
		Soluciones para colas con llegadas y	(2370)	
	3.1 Establecimiento del	servicios tipo fdp Gamma, fdp Erlang.		
	procedimiento a seguir para	Soluciones generales para llegadas y		
	dar solución al modelo.	salidas con cualquier tipo de fdp.		
	3.2 Resolución del modelo.	sandas con cuarquier tipo de rup.		
	3.3 Interpretación de los			
	parámetros de			
	comportamiento y			
	formulación de conclusiones.			

Unidad IV: <u>Teoría de inventarios</u>
Objetivo General: <u>Al finalizar la unidad, el alumno formulará y solucionará modelos basados en situaciones de inventarios.</u>

Objetivos	Actividades	Contenidos	Evaluación	Recursos
1. Establecer si una situación dada puede	1.1 Discusión de conocimientos	Naturaleza de una situación de	Todos los	Pizarra, marcador y
ser descrita como un problema de	previos de los estudiantes.	inventario: definición, características y	objetivos serán	borrador.
inventario.	1.2 Presentación de la naturaleza	aplicaciones.	evaluados	
	de una situación de inventario.		mediante:	Transparencias,
2. Formular un modelo o ajustar a un		Consideraciones sobre la demanda y		diapositivas.
modelo conocido la situación de	2.1 Exposición de los elementos de	tiempos de entrega.	Una prueba corta	
inventario.	un modelo de inventarios.		de carácter	Computadora
	2.2 Clasificación de los modelos de	Modelos determinísticos:	formativa (sólo	personal, software
3. Resolver el modelo para proponer	inventarios.	Modelos estáticos con demanda	modelos	de aplicación.
políticas de inventario.	2.5 Formulación de modelos.	uniforme, reaprovisionamiento	determinísticos	
		instantáneo y uniforme, con o sin	estáticos)	Bibliografía
	3.1 Establecimiento del	déficit, para uno o múltiples productos.		recomendada en
	procedimiento a seguir para dar	Modelos dinámicos.	Un proyecto con	análisis sinóptico.
	solución al modelo.		su respectiva	
	3.2 Resolución del modelo.	Modelos con rompimiento de costos.	defensa (sobre	
	3.3 Formulación de una política de	Modelos con restricciones.	los modelos	
	inventario.		determinísticos	
		Modelos estocásticos:	dinámicos con	
		Modelos de un período y de múltiples	ponderación	
		periodos.	10%)	
		Modelos de revisión continua		
		Modelos con tiempo de entrega	Una prueba de	
		estocástico	desarrollo que	
		Soluciones heurística	corresponde al	
			cuarto parcial.	
			(15%)	