Sistemas de Segundo Orden

- 1) En la Figura 1 se muestra la respuesta de un sistema a una entrada escalón de amplitud 2 unidades (r(t) = 2 * u(t)).
 - a) Encuentre la función de transferencia, G(s), que describe el modelo del sistema.

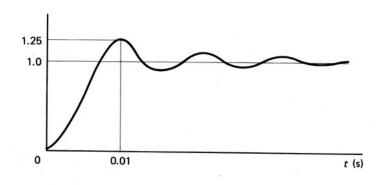


Figura 1

b) Si la función de transferencia, G(s), encontrada en a) se introduce en un sistema de control como el que se muestra en la Figura 2, determine la ganancia a del controlador de tal manera que el sistema se comporte como criticamente amortigüado.

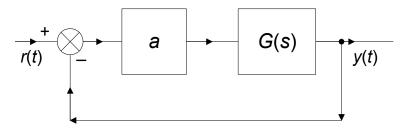


Figura 2

2) Para el sistema de control que se muestra en la Figura 3, determine la ganancia a y la localización del polo b de los parámetros que definen al controlador, de tal manera que la respuesta del sistema no exceda un M_p de 0.25 y que el tiempo de subida, t_r , sea menor que 0.1 s.

Figura 3

3) En la figura 4 se muestra un sistema de control con

$$D(s) = \frac{a(s+z)}{s+p}$$
 y $G(s) = \frac{1}{s(s+3)}$.

Determine los parámetros a, z y p que definen al controlador D(s), de manera que cuando se aplique un escalón unitario en la entrada (r(t) = u(t)), la respuesta del sistema no exceda un M_p de 0.1 y que el tiempo de estabilización, t_s , sea menor que 0.2 s (criterio del 2%)

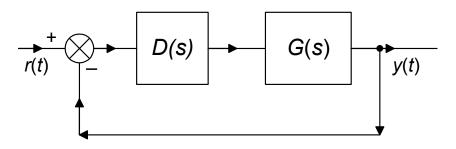


Figura 4

4) En la figura 5 se muestra un sistema de control PI con

$$C(s) = Kp + \frac{Ki}{s}$$
 y $P(s) = \frac{3s}{s^2 + 4s + 5}$

Determine los parámetros Kp y Ki que definen al controlador C(s), de manera tal que cuando se aplique una entrada, r(t) = Au(t), (donde A = 31~m es el valor deseado o setpoint) se obtenga una respuesta con un error en estado estable menor o igual 1~m y un comportamiento criticamente amortigüado ($\zeta = 1$) para el sistema de control.

Nota: Un sistema de segundo orden se representa como: $G(s) = \gamma \frac{w_n^2}{s^2 + 2\zeta w_n s + w_n^2}$

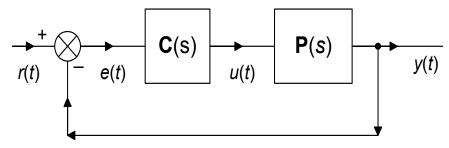
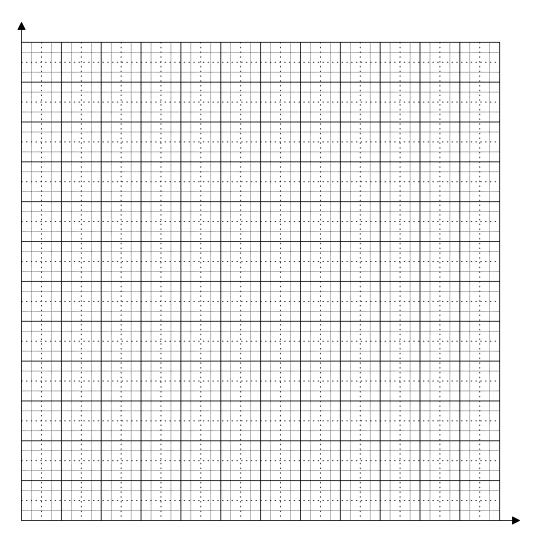



Figura 5

- 5) Las especificaciones de funcionamiento para un sistema de segundo orden ante una entrada escalón son:
 - 5.1) Porcentaje de sobrepaso o máximo pico porcentual,
 $M_p \leq 5\%.$
 - 5.2) Tiempo de estabilización, $t_s \leq 4$ segundos. (al 2%)
 - 5.3) Tiempo de pico, $t_p \leq 1$ segundo.

Muestre en un gráfico el área permisible para los polos con el fin de satisfacer las especificaciones.

Gráfico

1. El valor mínimo de la variable a para que el sistema sea sub-amortiguado es:		 6) Selección Múltiple (encierre en un círculo, la letra que identifica la respuesta correctal lado: el concepto, fórmula o cálculo que justifique su selección): A) Para la función de transferencia de un sistema de segundo orden: G(s) = 1. El valor mínimo de la variable a para que el sistema sea sub-amortiguado es: 	Ü
---	--	---	---

- (a) 0
- (b) 9
- (c) 3
- (d) 6
- (e) ninguna de las anteriores.
- 2. La única especificación constante en este caso es el:
 - (a) tiempo del pico, t_p .
 - (b) tiempo de subida o elevación, t_r .
 - (c) tiempo de estabilización, t_s .
 - (d) máximo pico, M_p .
 - (e) ninguna de las anteriores.
- 3. Si el máximo pico debe ser 4,3214%, el valor de a es:
 - (a) 3,00
 - (b) 6,00
 - (c) 4,24
 - (d) 18,00
 - (e) ninguna de las anteriores.
- 4. Si el tiempo de subida o elevación debe ser $0,3\ s,$ el valor de a es:
 - (a) 6,51
 - (b) 42,35
 - (c) 3,84
 - (d) 14,76
 - (e) ninguna de las anteriores.
- 5. Si la ganancia del sistema es 1, su tiempo del pico será:
 - (a) $0.7854 \ s$
 - (b) $0,1266 \ s$
 - (c) $0,1294 \ s$
 - (d) $3,3321 \ s$
 - (e) ninguna de las anteriores.

B) Para la función de transferencia de un sistema de segundo orden: $G(s) = \frac{2}{s^2 + bs + 16}$

1. El valor máximo de la variable b para que el sistema sea sub-amortiguado es: (a) 4 (b) 8 (c) 16 (d) 32 (e) ninguna de las anteriores. 2. La única especificación constante en este caso es el: (a) tiempo del pico, t_p . (b) tiempo de subida o elevación, t_r . (c) tiempo de estabilización, t_s . (d) máximo pico, M_p . (e) ninguna de las anteriores. 3. Si el máximo pico debe ser 4,3214%, el valor de b es: (a) 5,66 (b) 2,83 (c) 22,63(d) 11,31 (e) ninguna de las anteriores. 4. Si el tiempo de subida o elevación debe ser 0, 3 s, el valor de b es: (a) 0,64 (b) 5,12 (c) 1,28(d) 2,56(e) ninguna de las anteriores. 5. La curva de especificación que describe este sistema en el plano s cuando la variable b varía es: (a) una recta vertical. (b) dos rectas horizontales. (c) un círculo.

(d) un cono. (e) una elipse.