FORMULARIO:

Pares y Propiedades de las Transformada de Laplace

	£ (4)	E (-)			
	$\frac{f\left(t\right)}{\underline{d}^{n}\delta\left(t\right)}$	$F\left(s\right)$		$\pounds\left\{ g\left(t\right) \right\}$	$G(s) = \lim_{t_0 \to \infty} \int_0^{t_0} g(t) e^{-st} dt$
1	$\frac{d}{dt^n}$	s^n	1	$\mathcal{L}\left\{af_{1}\left(t\right) \pm bf_{2}\left(t\right)\right\}$	$aF_1(s) \pm bF_2(s)$
2	$\delta\left(t\right)$	1		(/1 (-//2 (-/)	. ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3	$u\left(t\right)$	$\frac{1}{s}$	2	$\pounds\left\{ f\left(at\right) \right\}$	$\frac{1}{a}F\left(\frac{s}{a}\right) , \ a>0$
		e^{-as}	3*	$\mathcal{L}\left\{f\left(t-a\right)u\left(t-a\right)\right\}$	$e^{-as}F\left(s\right) \ ,\ a\geq 0$
4	u(t-a)	$\frac{e^{-as}}{s}$ $\frac{1}{s^n}$	1		-as c (f (1 + -))
5 *	t^{n-1}	1_	4	$\mathcal{L}\left\{ f\left(t\right) u\left(t-a\right) \right\}$	$e^{-as} \mathcal{L}\left\{f\left(t+a\right)\right\}$
	(n-1)!	$\frac{s^n}{n!}$	5	$\mathcal{L}\left\{ e^{-at}f\left(t\right) \right\}$	$F\left(s+a ight)$
6	t^n	$\overline{s^{n+1}}$	6	$\mathcal{L}\left\{\frac{d^n f(t)}{dt^n}\right\}$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f^{1}(0) - \dots - f^{n-1}(0)$
7	e^{-at}	1		dt^n	
0 *	$t^{n-1}e^{-at}$	$\frac{s+a}{1}$	7	$\pounds\left\{ t^{n}f\left(t\right) \right\}$	$(-1)^n \frac{d F(s)}{ds^n}$
8*	(n-1)!	$\overline{(s+a)^n}$	8	$\mathcal{L}\left\{ \int_{-\tau}^{t}f\left(\tau\right) d\tau\right\}$	$\frac{(-1)^n \frac{d^n F(s)}{ds^n}}{\frac{F(s)}{}}$
9	sen(wt)	$\frac{w}{s^2 + w^2}$		J_0	S f (t)
1.0	(1)	$\frac{s^2+w^2}{s}$	9	$\mathcal{L}\left\{\frac{f\left(t\right)}{t}\right\}$	$\int_{s}^{\infty} F(s) ds$, si $\lim_{t \to 0} \frac{f(t)}{t}$ existe
10	cos(wt)	$\overline{s^2 + w^2}$	10	$\lim_{t \to 0} f(t)$	
11	senh(wt)	$\frac{w}{s^2 - w^2}$	10	$\lim_{t \to 0} f(t)$	$\lim_{s \to \infty} sF\left(s\right)$
10	7 (1)		11	$\lim_{t\to\infty}f\left(t\right)$	$\lim_{s \to 0} sF\left(s\right)$
12	$cosh\left(wt\right)$	$\frac{s}{s^2 - w^2}$			

Nota: Los pares y propiedades identificados con un super-índice asterisco deben ser usadas en la operación de la trans-

formada de Laplace inversa.

 $Otras\ formulas\ importantes$

$sen(\alpha \pm \beta)$	$sen(\alpha)cos(\beta) \pm cos(\alpha)sen(\beta)$
$\cos\left(\alpha\pm\beta\right)$	$\cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$
$e^{\pm jw}$	$cos(w) \pm jsen(w)$
cos(w)	$\frac{e^{jw} + e^{-jw}}{2}$
sen(w)	$\frac{e^{jw} - e^{-jw}}{2j}$
$\cosh\left(x\right)$	$\frac{e^x + e^{-x}}{2}$
senh(x)	$\frac{e^x - e^{-x}}{2}$
$\frac{D}{d}$	$c + \frac{r}{d}$
A_k	$\frac{1}{(k-1)!} \frac{d^{k-1}}{ds^{k-1}} \left((s+a)^r F(s) \right) \Big _{s=-a} , \text{ para } k = 1, 2,, r$
$\mathcal{L}\left\{\frac{M}{w}e^{-at}sen\left(wt+\phi\right)\right\}$	$\frac{M \lfloor \phi}{(s+a)^2 + w^2}$
$M \lfloor \phi$	$F(s)\left[\left(s+a\right)^{2}+w^{2}\right]\Big _{s=-a+jw}$

Reglas para obtener la transformada de Laplace directa

Asumiendo la función $f\left(t\right)=f_{1}\left(t\right)f_{2}\left(t\right)...f_{n}\left(t\right)$

- 1.- Si alguna de las funciones $f_k\left(t\right)$ es igual a $u\left(t-a\right)$, use la propiedad $\pounds\left\{f\left(t\right)u\left(t-a\right)\right\}=e^{-as}\pounds\left\{f\left(t+a\right)\right\}$.
- 2.- Si la función se puede descomponer en una suma, tome cada sub-función como un problema independiente y use la propiedad #1. $f(t) = f_1(t) + f_2(t) + ... + f_n(t) \rightarrow F(s) = F_1(s) + F_2(s) + ... + F_n(s)$
- 3.- Usando las propiedades comenzado con la más sencilla o fácil de aplicar descomponga f(t) en funciones auxiliares hasta obtener una función que se encuentre en la tabla de pares de transformadas de Laplace.
 - 4.- Para finalizar use el par de transformada sobre la función auxiliar y substituya hacia atrás hasta obtener F(s).
 - 4.1.- El par usado corresponderá a la sub-función $f_k(t)$ que no tenga asociada alguna propiedad.
- 4.2- Si todas las funciones $f_k(t)$ (k = 1, 2, ..., n) tienen asociadas alguna propiedad, el par usado corresponderá a la función $f_k(t)$ que tenga la propiedad más complicada.
- 4.3.- Si la función para la cual existe un par no está en la forma que aparece en la tabla, haga las manipulaciones algebraicas o trigonométricas necesarias para ajustarla a la tabla.
 - 4.4.- Se debe usar **sólo** un par.

Reglas para obtener la transformada de Laplace inversa

- 1.- Se reconoce las propiedades de la transformada de Laplace en F(s) y se descompone F(s) en funciones auxiliares, al remover esas propiedades. (ejemplo: e^{-as}), hasta obtener una función racional de s.
 - 2.- Hacer mónico el denominador de G(s); es decir, el coeficiente de máximo orden es uno.
 - 3.- Calcular los ceros y polos de G(s) y cancelar los términos comunes.
- 4.- Verificar si G(s) es estrictamente propia, es decir, el orden del polinomio del denominador es mayor que el orden del polinomio del numerador.
- 5.- Si G(s) no es estrictamente propia, se calcula $G(s) = \frac{N(s)}{D(s)} = C(s) + \frac{R(s)}{D(s)} = G_1(s) + G_2(s)$, usando la técnica de división de polinomios.
- 6.- Si G(s) es estrictamente propia se expande en fracciones parciales. Si G(s) no es estrictamente propia, la expansión sólo se hace para $G_2(s)$.
- 7.- Se obtiene la "forma" de g(t), usando la inversa de los pares y las propiedades de la transformada de Laplace. $(g(t) = g_1(t) + g_2(t))$
 - 8.- Se calcula el valor de los residuos para polos simples (K_i) , polos múltiples (A_i) y polos conjugados $(M_i | \phi_i)$.